# Métodos Matemáticos de Bioingeniería Grado en Ingeniería Biomédica Chapter 2: Differentation in Several Variables Lecture 5

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones Área de Estadística e Investigación Operativa Universidad Rey Juan Carlos

8 de marzo de 2021

# Outline

# 1 Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Functions and applications

# Outline

# Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Functions and applications

# Motivation

• The volume and surface area of a sphere depend on its radius:

$$V=rac{4}{3}\pi r^3$$
 and  $S=4\pi r^2$ 

• These equations define the volume and surface area as functions of the radius,

$$V(r)=rac{4}{3}\pi r^3$$
 and  $S(r)=4\pi r^2$ 

Functions have an essential characteristic:
 The so-called independent variable (the radius) determines

 a unique value of the dependent variable (V or S)

Functions and applications

# Motivation

- There are many quantities that are determined uniquely not by one variable **but by several** 
  - The area of a rectangle
  - The volume of a cylinder or cone
  - The average rainfall in Madrid
  - The National debt
  - ...
- Realistic modelling of the world requires the understanding of:
  - The concept of a function of more than one variable
  - How to find meaningful ways to visualize such functions

Functions and applications

#### Features of Any Function

- Any function has three features
  - 1. A domain set X.
  - 2. A codomain set Y.
  - 3. A rule of assignment that associates to each element x in the domain X a unique element, f(x), in the codomain Y.
- We will frequently use the notation

 $f:X \to Y$ 

• Such notation indicates the sets involving a particular function

Although it does not make the nature of the rule of assignment explicit

Functions and applications

# Features of Any Function

$$f: X \to Y$$

• This notation also suggests the mapping nature of a function



Functions and applications

#### Example 1a

- Consider the act of assigning to each U.S. citizen his or her social security number.
- This pairing defines a function.

Each citizen is assigned one social security number

- The **domain** is the set of U.S. citizens.
- The codomain is the set of all nine-digit strings of numbers.

Functions and applications

### Example 1b

- A university assigns students to dormitory rooms.
- It is unlikely that it is creating a function from the set of available rooms to the set of students.
- Some rooms may have more than one student assigned to them.

A particular room does not necessarily determine a unique student occupant Functions and applications

# Definition 1.1: Range of a function

- The range or image of a function f : X → Y is the set of those elements of Y that are actual values of f.
- The range of f consists of those y in Y such that y = f(x) for some x in X.
- Using set notation,

Range f = Image f = { $y \in Y | y = f(x)$  for some  $x \in X$ }

Functions and applications

#### Example 1a

- Recall the social security function of Example 1a.
- The range consists of those nine-digit numbers **actually** used as social security numbers.
- For example, is the number 000 00 0000 in the range?

No one is actually assigned this number

Functions and applications

# Single-Variable Real functions

• For single-variable calculus, the functions of interest are those whose domains and codomains are subsets of  $\mathbb{R}$ .

Usually only the rule of assignment is made explicit

- It is generally assumed that the domain is the largest possible subset of  $\mathbb R$  for which the function makes sense.
- The codomain is generally taken to be all of  $\mathbb R.$

# Example 3

- Suppose g is a function such that  $g(x) = \sqrt{x-1}$ .
- If we take the codomain to be all of  $\mathbb{R}$ , the domain cannot be any larger than  $[1,\infty)$ .
- If the domain included any values less than one, the radicand would be negative and, hence, g would not be real-valued.

Functions and applications

# Multiple-Variable Real functions

Multiple-variable real functions are the functions whose

- Domains are subsets X of  $\mathbb{R}^n$ , and
- Codomains are subsets of  $\mathbb{R}^m$ , for some  $n, m \in \mathbb{Z}^+$
- For simplicity of notation, we will take the codomains to be all of  $\mathbb{R}^m$  (except when specified otherwise)
- Such a function is a mapping  $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$

It associates to a vector (or point)  $\mathbf{x}$  in Xa unique vector (point)  $\mathbf{f}(\mathbf{x})$  in  $\mathbb{R}^m$ 

Functions and applications

#### Example 4

• Let  $T: \mathbb{R}^3 \to \mathbb{R}$  be defined by

$$T(x, y, z) = xy + xz + yz$$

- We can think of T as a sort of "temperature function".
- Given a point  $\mathbf{x} = (x, y, z)$  in  $\mathbb{R}^3$ , T(x) calculates the temperature at that point.

Functions and applications

# Example 5

• Let 
$$L: \mathbb{R}^n \to \mathbb{R}$$
 be given by

$$L(\mathbf{x}) = \|\mathbf{x}\|$$

- This is a "length function".
- It computes the length of any vector  $\mathbf{x}$  in  $\mathbb{R}^n$ .
- It is one-one? L is not, since,

$$L(\mathbf{e}_i)=L(\mathbf{e}_j)=1,$$

with  $\mathbf{e}_i$  and  $\mathbf{e}_i$  any two of the standard basis vectors for  $\mathbb{R}^n$ .

• Is *L* **onto**? *L* also fails to be onto, since the length of a vector is always non-negative.

Functions and applications

# Example 6

• Consider the function given by

$$\mathbf{N}(\mathbf{x}) = rac{\mathbf{x}}{\|\mathbf{x}\|}$$

where **x** is a vector in  $\mathbb{R}^3$ .

• Note that  ${\bf N}$  is not defined if  ${\bf x}={\bf 0},$  so the largest possible domain for  ${\bf N}$  is,

$$\mathbb{R}^3 - \{\mathbf{0}\}$$

- The range of **N** consists of all unit vectors in  $\mathbb{R}^3$ .
- The function N is the "normalization function".
- It takes a nonzero vector in ℝ<sup>3</sup> and returns the unit vector that points in the same direction.

Functions and applications

# Example 7

- Sometimes a function may be given numerically by a table.
- One such example is the notion of windchill.

The apparent temperature one feels when taking into account both the actual air temperature and the speed of the wind

| Air Temp<br>(deg F) | Windspeed (mph) |     |     |     |     |     |     |     |     |     |     |     |  |
|---------------------|-----------------|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|-----|--|
|                     | 5               | 10  | 15  | 20  | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  |  |
| 40                  | 36              | 34  | 32  | 30  | 29  | 28  | 28  | 27  | 26  | 26  | 25  | 25  |  |
| 35                  | 31              | 27  | 25  | 24  | 23  | 22  | 21  | 20  | 19  | 19  | 18  | 17  |  |
| 30                  | 25              | 21  | 19  | 17  | 16  | 15  | 14  | 13  | 12  | 12  | 11  | 10  |  |
| 25                  | 19              | 15  | 13  | 11  | 9   | 8   | 7   | 6   | 5   | 4   | 4   | 3   |  |
| 20                  | 13              | 9   | 6   | 4   | 3   | 1   | 0   | -1  | -2  | -3  | -3  | -4  |  |
| 15                  | 7               | 3   | 0   | -2  | -4  | -5  | -7  | -8  | -9  | -10 | -11 | -11 |  |
| 10                  | 1               | -4  | -7  | -9  | -11 | -12 | -14 | -15 | -16 | -17 | -18 | -19 |  |
| 5                   | -5              | -10 | -13 | -15 | -17 | -19 | -21 | -22 | -23 | -24 | -25 | -26 |  |
| 0                   | -11             | -16 | -19 | -22 | -24 | -26 | -27 | -29 | -30 | -31 | -32 | -33 |  |
| -5                  | -16             | -22 | -26 | -29 | -31 | -33 | -34 | -36 | -37 | -38 | -39 | -40 |  |
| -10                 | -22             | -28 | -32 | -35 | -37 | -39 | -41 | -43 | -44 | -45 | -46 | -48 |  |
| -15                 | -28             | -35 | -39 | -42 | -44 | -46 | -48 | -50 | -51 | -52 | -54 | -55 |  |
| -20                 | -34             | -41 | -45 | -48 | -51 | -53 | -55 | -57 | -58 | -60 | -61 | -62 |  |
| -25                 | -40             | -47 | -51 | -55 | -58 | -60 | -62 | -64 | -65 | -67 | -68 | -69 |  |
| -30                 | -46             | -53 | -58 | -61 | -64 | -67 | -69 | -71 | -72 | -74 | -75 | -76 |  |
| -35                 | -52             | -59 | -64 | -68 | -71 | -73 | -76 | -78 | -79 | -81 | -82 | -84 |  |
| -40                 | -57             | -66 | -71 | -74 | -78 | -80 | -82 | -84 | -86 | -88 | -89 | -91 |  |
| -45                 | -63             | -72 | -77 | -81 | -84 | -87 | -89 | -91 | -93 | -95 | -97 | -98 |  |

Functions and applications

#### Windspeed (mph) Air Temp (deg F) 5 10 15 20 25 45 50 55 30 35 40 28 40 36 34 30 29 28 26 26 35 31 27 25 24 23 22 21 20 19 19 18 30 19 16 14 13 25 7 19 9 8 6 5 4 4 20 13 9 6 4 3 1 0 -1-2-3-315 -2-77 3 0 -4-5 -8-9 -10-11-7 10 -4-9 -14-15-16-185 -5-10-13-15-17-19-21-22-23-24-250 -11-16-19-22-24-26-29-30-31-32-5-16-26-29-31-33-34-36-37-38-39-10-28-32-35-37-39-41-43-44-45-46-42-28-35-39-44-46-48-50-51-52-54-20-51-34-41-45-48-55-57-58-60-61-25-40-47-55-58-60-62-64-65-67-68-30-46-53-58-61-64-67-69-71-72-74-75

# Example 7

-35

-40

-45

-52 -59 -64 -68 -71 -73 -76 -78

-57 -66 -71 -74 -78 -80 -82 -84 -86 -88 -89 -91

-63 -72 -77 -81 -84 -87 -89 -91 -93 -95 -97 -98

 If the air temperature is 20°F and the windspeed is 25 mph, the windchill temperature ("how cold it feels") is 3°F

-79

-81 -82 -84

60

25

10

3

-4

-11

-19

-26

-40

-48

-55

-62

-69

-76

Functions and applications

# Example 7

| Air Temp | Windspeed (mph) |     |     |         |     |     |     |     |     |     |     |     |  |
|----------|-----------------|-----|-----|---------|-----|-----|-----|-----|-----|-----|-----|-----|--|
| (deg F)  | 5               | 10  | 15  | 20      | 25  | 30  | 35  | 40  | 45  | 50  | 55  | 60  |  |
| 40       | 36              | 34  | 32  | 30      | 29  | 28  | 28  | 27  | 26  | 26  | 25  | 25  |  |
| 35       | 31              | 27  | 25  | 24      | 23  | 22  | 21  | 20  | 19  | 19  | 18  | 17  |  |
| 30       | 25              | 21  | 19  | 17      | 16  | 15  | 14  | 13  | 12  | 12  | 11  | 10  |  |
| 25       | 19              | 15  | 13  | 11      | 9   | 8   | 7   | 6   | 5   | 4   | 4   | 3   |  |
| 20       | 13              | 9   | 6   | 4       | 3   | 1   | 0   | -1  | -2  | -3  | -3  | -4  |  |
| 15       | 7               | 3   | 0   | $^{-2}$ | -4  | -5  | -7  | -8  | -9  | -10 | -11 | -11 |  |
| 10       | 1               | -4  | -7  | -9      | -11 | -12 | -14 | -15 | -16 | -17 | -18 | -19 |  |
| 5        | -5              | -10 | -13 | -15     | -17 | -19 | -21 | -22 | -23 | -24 | -25 | -26 |  |
| 0        | -11             | -16 | -19 | -22     | -24 | -26 | -27 | -29 | -30 | -31 | -32 | -33 |  |
| -5       | -16             | -22 | -26 | -29     | -31 | -33 | -34 | -36 | -37 | -38 | -39 | -40 |  |
| -10      | -22             | -28 | -32 | -35     | -37 | -39 | -41 | -43 | -44 | -45 | -46 | -48 |  |
| -15      | -28             | -35 | -39 | -42     | -44 | -46 | -48 | -50 | -51 | -52 | -54 | -55 |  |
| -20      | -34             | -41 | -45 | -48     | -51 | -53 | -55 | -57 | -58 | -60 | -61 | -62 |  |
| -25      | -40             | -47 | -51 | -55     | -58 | -60 | -62 | -64 | -65 | -67 | -68 | -69 |  |
| -30      | -46             | -53 | -58 | -61     | -64 | -67 | -69 | -71 | -72 | -74 | -75 | -76 |  |
| -35      | -52             | -59 | -64 | -68     | -71 | -73 | -76 | -78 | -79 | -81 | -82 | -84 |  |
| -40      | -57             | -66 | -71 | -74     | -78 | -80 | -82 | -84 | -86 | -88 | -89 | -91 |  |
| -45      | -63             | -72 | -77 | -81     | -84 | -87 | -89 | -91 | -93 | -95 | -97 | -98 |  |

• If *s* denotes **windspeed** and *t* **air temperature**, then the windchill is a function

W(s,t)

Functions and applications

### Scalar-valued functions

• The functions described in Examples 4, 5, and 7 are scalar-valued functions

# Functions whose codomains are $\mathbb{R}$ or subsets of $\mathbb{R}$

- Scalar-valued functions are our main concern for this chapter.
- Nonetheless, let's look at a few examples of functions whose codomains are ℝ<sup>m</sup> where m > 1. They are usually called

# Vector-valued functions

Functions and applications

# Example 8

• Define 
$$\mathbf{f} : \mathbb{R} \to \mathbb{R}^3$$
 by

$$\mathbf{f}(t) = (\cos t, \sin t, t)$$

 $\bullet$  The range of f is the curve in  $\mathbb{R}^3$  with parametric equations

$$\begin{cases} x = \cos t \\ y = \sin t \quad t \in \mathbb{R} \\ z = t \end{cases}$$

Functions and applications

# Example 8

• Define 
$$\mathbf{f}: \mathbb{R} \to \mathbb{R}^3$$
 by

$$\mathbf{f}(t) = (\cos t, \sin t, t)$$

• If we think of t as a time parameter, then this function traces out the corkscrew curve.



• This curve is called a helix.

Functions and applications

# Example 9

- We can think on the velocity of a fluid as a vector in  $\mathbb{R}^3$
- This vector depends on (at least)
  - The point at which one measures the velocity , and
  - The time at which one makes the measurement
- Velocity may be considered to be a function

$$\mathbf{v}: X \subseteq \mathbb{R}^4 o \mathbb{R}^3$$

- The domain X is a subset of  $\mathbb{R}^4$ :
  - Three variables *x*, *y*, *z* are required to describe a point in the fluid.
  - A fourth variable t is needed to keep track of time.

Functions and applications





• For instance, such a function **v** might be given by the expression

$$\mathbf{v}(x, y, z, t) = xyzt\mathbf{i} + (x^2 - y^2)\mathbf{j} + (3z + t)\mathbf{k}$$

Functions and applications

# Vector-valued functions explicit form

- In general, if we have a function  $\mathbf{f}: X \subseteq \mathbb{R}^n \to \mathbb{R}^m$ , then
  - $\mathbf{x} \in X$  can be written as,

$$\mathbf{x} = (x_1, x_2, \ldots, x_n)$$

 $\bullet\,$  and f can be written in terms of its component functions,

$$f_1, f_2, ..., f_m$$

- The component functions are scalar-valued functions of x ∈ X.
- So, **Vector functions** can be written as the Cartesian product of scalar-valued functions. In general, is enough to study the properties of the scalar-valued function, and then apply those properties in each component.

Functions and applications

# Vector-valued functions explicit form

$$f(\mathbf{x}) = f(x_1, x_2, \dots, x_n)$$
(emphasizing the variables)

$$= (f_1(\mathbf{x}), f_2(\mathbf{x}), \dots, f_m(\mathbf{x}))$$
(emphasizing the component functions)

$$= (f_1(x_1, x_2, \dots, x_n), f_2(x_1, x_2, \dots, x_n), \dots, f_m(x_1, x_2, \dots, x_n)$$
  
(writing out all components)

Functions and applications

# Example 5

• Let 
$$L : \mathbb{R}^n \to \mathbb{R}$$
 be given by

$$L(\mathbf{x}) = \|\mathbf{x}\|$$

• The function L, when expanded, becomes

$$L(\mathbf{x}) = L(x_1, x_2, \dots, x_n) = \sqrt{x_1^2 + x_2^2 + \dots + x_n^2}$$

Functions and applications

# Example 6

• Consider the function given by

$$N(x) = \frac{x}{\|x\|}$$

where  $\boldsymbol{x}$  is a vector in  $\mathbb{R}^3$  .

• The function **N** becomes

$$\mathbf{N}(\mathbf{x}) = \frac{\mathbf{x}}{\|\mathbf{x}\|} = \frac{(x_1, x_2, x_3)}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$
$$= \left(\frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}}, \frac{x_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}}\right)$$

Functions and applications

# Example 6

 ${\ensuremath{\,\circ\,}}$  Hence, the three component functions of N are

$$N_1(x_1, x_2, x_3) = \frac{x_1}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

$$N_2(x_1, x_2, x_3) = \frac{x_2}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

$$N_3(x_1, x_2, x_3) = \frac{x_3}{\sqrt{x_1^2 + x_2^2 + x_3^2}}$$

Graphing functions: contour and level curves

# Outline

# I Functions of Several Variables; Graphing Surfaces

Functions and applications

# • Graphing functions: contour and level curves

Conic sections curves

Graphing functions: contour and level curves

# Graphing Scalar-Valued Functions

• A function  $f: X \subseteq \mathbb{R} \to \mathbb{R}$  takes a real number and returns another real number

$$\xrightarrow{x} \mathbf{R} \xrightarrow{f} f(x)$$

• The graph of f is something that "lives" in  $\mathbb{R}^2$ 



Graphing functions: contour and level curves



• The graph of f consists of points (x, y) such that y = f(x).

Graph 
$$f = \{(x, f(x)) \mid x \in X\}$$

 In general, the graph of a scalar-valued function of a single variable is a curve
 A one-dimensional object sitting inside a two dimensional space
 Graphing functions: contour and level curves

# Graphing a Function of Two Variables

- Suppose we have a function  $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$
- We make essentially the same definition for the graph

Graph 
$$f = \{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in X\}$$

 $\mathbf{x} = (x, y)$  is a point of  $\mathbb{R}^2$ 

• Thus,  $\{(\mathbf{x}, f(\mathbf{x}))\}$  may also be written as

 $\{(x, y, f(x, y))\}$  or  $\{(x, y, z) \mid (x, y) \in X, z = f(x, y)\}$ 

 $\bullet\,$  Hence, the graph of a scalar-valued function of two variables is something that sits in  $\mathbb{R}^3$ 

# The graph will be a surface

Graphing functions: contour and level curves

# Example 10

• Consider the graph of the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \ f(x,y) = rac{1}{12}y^3 - y - rac{1}{4}x^2 + rac{7}{2}$$



Graphing functions: contour and level curves



• Each point  $\mathbf{x} = (x, y)$  in  $\mathbb{R}^2$ , is graphed as a point in  $\mathbb{R}^3$  with coordinates

$$\left(x, y, \frac{1}{12}y^3 - y - \frac{1}{4}x^2 + \frac{7}{2}\right)$$

Graphing functions: contour and level curves

# Contour Curves and Level Curves

• Graphing functions of two variables is a much more difficult task than graphing functions of one variable

One method is to let a computer do the work

 Nonetheless, to get a feeling, a sketch of a rough graph is still a valuable skill

The trick is to find a way to cut down on the dimensions involved

One way is to draw certain special curves that lie on the surface

$$z=f(x,y)$$

Graphing functions: contour and level curves

#### Contour Curves and Level Curves

- This special curves that lie on the surface z = f(x, y) are called contour curves.
- Contour curves are obtained by intersecting the surface with horizontal planes *z* = *c*, for various values of the constant *c*.

#### Example 10

• Some contour curves drawn on the surface of Example 10



Graphing functions: contour and level curves

#### Contour Curves and Level Curves

• Let us compress all the contour curves onto the xy-plane

## Look down along the positive *z*-axis

• Then we create a "topographic map" of the surface called level curves of the original function *f* 

#### Example 10

• Some level curves drawn for the Example 10



Graphing functions: contour and level curves

#### Example 10

• Some contour and level curves drawn for the Example 10



Graphing functions: contour and level curves

#### Contour Curves and Level Curves

We can reverse the process in order to sketch systematically the graph of a function f of two variables

- 1. We first construct a topographic map in  $\mathbb{R}^2$  by finding the **level curves** of f.
- 2. Then situate these curves in  $\mathbb{R}^3$  as **contour curves** at the appropriate heights.
- 3. Finally, complete the graph of the function.

Graphing functions: contour and level curves

#### Definition 1.4: Level Curve

- Let  $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$  be a scalar-valued function of two variables.
- The level curve at height c of f is the curve in  $\mathbb{R}^2$  defined by the equation

$$f(x,y)=c$$

where c is a constant.

In mathematical notation,

$$L_c = \{(x, y) \in \mathbb{R}^2 \mid f(x, y) = c\}$$

Graphing functions: contour and level curves

#### Definition 1.4: Contour Curve

- Let  $f: X \subseteq \mathbb{R}^2 \to \mathbb{R}$  be a scalar-valued function of two variables
- The contour curve at height c of f is the level curve drawn in  $\mathbb{R}^3$ .
- In mathematical notation,

$$C_c = \{(x, y, z) \in \mathbb{R}^3 \mid f(x, y) = c\}$$

Graphing functions: contour and level curves

#### Example 11

Use level and contour curves to construct the graph of the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x, y) = 4 - x^2 - y^2$$

• By Definition 1.4, the level curve at height c is

$$\{(x,y) \in \mathbb{R}^2 \mid 4 - x^2 - y^2 = c\} = \{(x,y) \mid x^2 + y^2 = 4 - c\}$$

- The level curves for c<4 are circles centered at the origin of radius  $\sqrt{4-c}$
- The level "curve" at height c = 4 is not a curve but just a single point (the origin)
- There are no level curves at heights larger than 4, since the equation  $x^2 + y^2 = 4 c$  has no real solutions in x and y

Graphing functions: contour and level curves

#### Example 11

Use level and contour curves to construct the graph of the function

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x,y) = 4 - x^2 - y^2$$

| С                | level curve $x^2 + y^2 = 4 - c$ |
|------------------|---------------------------------|
| -5               | $x^2 + y^2 = 9$                 |
| -1               | $x^2 + y^2 = 5$                 |
| 0                | $x^2 + y^2 = 4$                 |
| 1                | $x^2 + y^2 = 3$                 |
| 3                | $x^2 + y^2 = 1$                 |
| 4                | $x^2 + y^2 = 0 \iff x = y = 0$  |
| c, where $c > 4$ | empty                           |

Graphing functions: contour and level curves

## Example 11

Use level and contour curves to construct the graph of the function

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x,y) = 4 - x^2 - y^2$$

• "Topographic map" or family of level curves of the surface



Graphing functions: contour and level curves

### Example 11

Use level and contour curves to construct the graph of the function

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x, y) = 4 - x^2 - y^2$$

• Some contour curves, which sit in  $\mathbb{R}^3$ :



Graphing functions: contour and level curves

#### Example 11

Use level and contour curves to construct the graph of the function

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x, y) = 4 - x^2 - y^2$$



Graphing functions: contour and level curves

#### Example 11 - Sections of the surface

If you want to get even a better feeling about the shape of the surface, is also useful to "chop" the surface with (vertical) planes of the form x = c or y = c:

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x, y) = 4 - x^2 - y^2$$

• Section of the surface  $z = 4 - x^2 - y^2$  by the plane x = 0

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = 4 - x^2 - y^2, x = 0\} = \{(0, y, z) \mid z = 4 - y^2\}$$

• Section of the surface  $z = 4 - x^2 - y^2$  by the plane y = 0

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = 4 - x^2 - y^2, y = 0\} = \{(x, 0, z) \mid z = 4 - x^2\}$$

#### All these sections are parabolas

Graphing functions: contour and level curves

## Example 11

Use level and contour curves to construct the graph of the function

$$f: \mathbb{R}^2 \rightarrow \mathbb{R}, \quad f(x, y) = 4 - x^2 - y^2$$



Graphing functions: contour and level curves

#### Example 12

Graph the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = y^2 - x^2$$



Graphing functions: contour and level curves

## Example 12

Graph the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = y^2 - x^2$$

#### The level curves are almost all hyperbolas

• The exception is the level curve at height 0, which is a pair of intersecting lines



Graphing functions: contour and level curves

#### Example 12

Graph the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = y^2 - x^2$$

• Section of the surface  $z = y^2 - x^2$  by the plane x = c

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = y^2 - x^2, x = c\} = \{(c, y, z) \mid z = y^2 - c^2\}$$

Parabolas in the planes x = c

• Section of the surface  $z = y^2 - x^2$  by the plane y = c

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = y^2 - x^2, y = c\} = \{(c, y, z) \mid z = c^2 - x^2\}$$

Parabolas in the planes y = c

Graphing functions: contour and level curves

#### Example 12

Graph the function

$$f: \mathbb{R}^2 \to \mathbb{R}, \quad f(x,y) = y^2 - x^2$$

• The level curves and sections generate the contour curves and surface depicted in figure



• This surface is called a hyperbolic paraboloid.

Graphing functions: contour and level curves

#### Example 13

Graph the function:

$$h: \mathbb{R}^2 \setminus \{(0,0)\} \rightarrow \mathbb{R}, \quad h(x,y) = \ln(x^2 + y^2)$$

• The level curve of h at height c is

$$\{(x,y) \in \mathbb{R}^2 \mid \ln(x^2 + y^2) = c\} = \{(x,y) \mid x^2 + y^2 = e^c\}$$

• Since  $e^c > 0$  for all  $c \in \mathbb{R}$ , the level curve

- Exists for any *c*, and
- Is a circle of radius  $\sqrt{e^c} = e^{c/2}$

Graphing functions: contour and level curves

### Example 13

Graph the function:

$$h: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \quad h(x,y) = \ln(x^2 + y^2)$$

| С  | level curve $x^2 + y^2 = e^c$ |  |
|----|-------------------------------|--|
| -5 | $x^2 + y^2 = e^{-5}$          |  |
| -1 | $x^2 + y^2 = e^{-1}$          |  |
| 0  | $y^2 + x^2 = 1$               |  |
| 1  | $y^2 + x^2 = e$               |  |
| 3  | $y^2 + x^2 = e^3$             |  |
| 4  | $y^2 + x^2 = e^4$             |  |

Graphing functions: contour and level curves

#### Example 13

Graph the function:

$$h: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \quad h(x,y) = \ln(x^2 + y^2)$$

• The collection of level curves is shown in figure



Graphing functions: contour and level curves

#### Example 13

Graph the function:

$$h: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \quad h(x,y) = \ln(x^2 + y^2)$$

• Section of the graph by the plane x = 0

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = \ln(x^2 + y^2), x = 0\} \\= \{(0, y, z) \mid z = \ln(y^2) = 2\ln|y|\}$$

• Section of the graph by the plane y = 0

$$\{(x, y, z) \in \mathbb{R}^3 \mid z = \ln(x^2 + y^2), y = 0\} \\= \{(x, 0, z) \mid z = \ln(x^2) = 2\ln|x|\}$$

Graphing functions: contour and level curves

#### Example 13

Graph the function:

$$h: \mathbb{R}^2 - \{(0,0)\} \to \mathbb{R}, \quad h(x,y) = \ln(x^2 + y^2)$$

• The complete graph is shown in figure



Graphing functions: contour and level curves

#### The Unit Circle Example

Important remark: Not all curves in  $\mathbb{R}^2$  can be described as the graph of a single function of one variable

• The most familiar example is the unit circle



• Its graph cannot be determined by a single equation of the form

$$y = f(x)$$

Graphing functions: contour and level curves

#### The Unit Circle Example

• The graph of the circle may be described analytically by the equation

$$x^2 + y^2 = 1$$

• In general, a curve in  $\mathbb{R}^2$  is determined by an arbitrary equation in x and y

Not necessarily one that isolates *y* alone on one side

• This means that a general curve is given by an equation of the form

F(x,y) = c

# As level set of a function of two variables

Graphing functions: contour and level curves

## The Unit Circle Example

- The analogous situation occurs with surfaces in  $\mathbb{R}^3$ .
- Frequently a surface is determined by an equation of the form

$$F(x,y,z)=c$$

# As a level set of a function of three variables

• It is not necessarily one of the form

$$z=f(x,y)$$

If it is not possible to state a variable as function of the other ones then is called a **implicit formula**. All functions can be expressed as implicit formula doing, z - f(x, y) = c, c = 0.

Graphing functions: contour and level curves

#### Example 15

A sphere is a surface in  $\mathbb{R}^3$ 

whose points are all equidistant from a fixed point

• If this fixed point is the origin, then the equation for the sphere is

$$\|\mathbf{x} - \mathbf{0}\| = \|\mathbf{x}\| = a$$

where a is a positive constant and  $\mathbf{x} = (x, y, z)$  is a point on the sphere.

• If we square both sides of equation and expand the dot product

$$x^2 + y^2 + z^2 = a^2$$

Graphing functions: contour and level curves

#### Example 15

#### A sphere is a surface in $\mathbb{R}^3$ whose points are all equidistant from a fixed point

• If the center of the sphere is at the point  $\mathbf{x}_0 = (x, y, z)$  then equation should be modified to



$$\|\mathbf{x} - \mathbf{x_0}\| = a$$

Graphing functions: contour and level curves

## Example 15

# A sphere is a surface in $\mathbb{R}^3$ whose points are all equidistant from a fixed point



• When equation  $\|\mathbf{x} - \mathbf{x_0}\| = a$  is expanded, the following general equation for a sphere is obtained

$$(x - x_0)^2 + (y - y_0)^2 + (z - z_0)^2 = a^2$$

Graphing functions: contour and level curves

## Example 15

A sphere is a surface in  $\mathbb{R}^3$  whose points are all equidistant from a fixed point

$$x^2 + y^2 + z^2 = a^2$$

- In the equation for a sphere, there is no way to solve for z uniquely in terms of x and y
- If we try to isolate z, then

$$z^2 = a^2 - x^2 - y^2$$

• So we are forced to make a choice of positive or negative square roots in order to solve for *z* 

$$z = \sqrt{a^2 - x^2 - y^2}$$
 or  $z = -\sqrt{a^2 - x^2 - y^2}$ 

Graphing functions: contour and level curves

#### Example 15

A sphere is a surface in  $\mathbb{R}^3$  whose points are all equidistant from a fixed point

$$z = \sqrt{a^2 - x^2 - y^2}$$
 or  $z = -\sqrt{a^2 - x^2 - y^2}$ 

• The positive square root corresponds to the upper hemisphere.

• The negative square root corresponds to the lower hemisphere.

## In any case, the entire sphere cannot be the graph of a single function of two variables

Conic sections curves

## Outline

## 1 Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Conic sections curves

## Quadratic Surfaces

#### Conic sections

- Conic sections are curves obtained from the intersection of a cone with various planes.
- They are among the simplest, yet also the most interesting, of plane curves:
  - The circle.
  - The ellipse.
  - The parabola.
  - The hyperbola.
- They have an elegant algebraic connection:

Every conic section is described analytically by a polynomial equation of degree two in two variables

Conic sections curves

#### Conic sections

Every conic section is described analytically by a polynomial equation of degree two in two variables

• That is, every conic can be described by an equation that looks like

$$Ax^2 + Bxy + Cy^2 + Dx + Ey + F = 0$$

for suitable constants  $A, \ldots, F$ .

#### Conic sections curves

### General Quadric Surfaces

- In  $\mathbb{R}^3$ , the analytic analogue of the conic section is called a quadratic surface.
- Quadratic surfaces are defined by equations that are polynomials of degree two in three variables

$$Ax2 + Bxy + Cxz + Dy2 + Eyz + Fz2 + Gx + Hy + Iz + J = 0$$

• To pass from this equation to the appropriate graph is, in general, a cumbersome process

We need the aid of either a computer or more linear algebra than we currently have at our disposal

 We sketch some examples whose corresponding analytic equations are relatively simple.

#### Conic sections curves

#### Ellipsoid



- It is the three-dimensional analogue of an ellipse in the plane.
- If a = b = c, then the ellipsoid is a sphere of radius a.
- The sections of the ellipsoid by planes perpendicular to the coordinate axes are all ellipses.

#### Conic sections curves

## Elliptic paraboloid



- The paraboloid has:
  - Elliptical (or single-point or empty) sections by the planes "z = constant", and
  - Parabolic sections by "x = constant" or "y = constant" planes

Conic sections curves

#### Elliptic paraboloid



• The constants *a* and *b* affect the aspect ratio of the elliptical cross sections

#### Conic sections curves

### Elliptic paraboloid



• The constant c affects the steepness of the dish

## Larger values of *c* produce steeper paraboloids

Conic sections curves

#### Hyperbolic paraboloid



- It is shaped like a saddle whose
  - "x = constant" or "y = constant" sections are parabolas , and
  - "z = constant" sections are hyperbolas

Conic sections curves

#### Elliptic cone



- The sections by "z = constant" planes are ellipses
- The sections by x = 0 or y = 0 are each a pair of intersecting lines.