Métodos Matemáticos de Bioingeniería
 Grado en Ingeniería Biomédica
 Chapter 2: Differentation in Several Variables

Lecture 5

Marius A. Marinescu

Departamento de Teoría de la Señal y Comunicaciones
Área de Estadística e Investigación Operativa
Universidad Rey Juan Carlos

$$
8 \text { de marzo de } 2021
$$

Outline

(1) Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Outline

(1) Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Motivation

- The volume and surface area of a sphere depend on its radius:

$$
V=\frac{4}{3} \pi r^{3} \quad \text { and } \quad S=4 \pi r^{2}
$$

- These equations define the volume and surface area as functions of the radius,

$$
V(r)=\frac{4}{3} \pi r^{3} \quad \text { and } \quad S(r)=4 \pi r^{2}
$$

- Functions have an essential characteristic:

The so-called independent variable (the radius) determines a unique value of the dependent variable (V or S)

Motivation

- There are many quantities that are determined uniquely not by one variable but by several
- The area of a rectangle
- The volume of a cylinder or cone
- The average rainfall in Madrid
- The National debt
- ...
- Realistic modelling of the world requires the understanding of:
- The concept of a function of more than one variable
- How to find meaningful ways to visualize such functions

Features of Any Function

- Any function has three features

1. A domain set X.
2. A codomain set Y.
3. A rule of assignment that associates to each element x in the domain X a unique element, $f(x)$, in the codomain Y.

- We will frequently use the notation

$$
f: X \rightarrow Y
$$

- Such notation indicates the sets involving a particular function

Although it does not make the nature of the rule of assignment explicit

Features of Any Function

$$
f: X \rightarrow Y
$$

- This notation also suggests the mapping nature of a function

Example 1a

- Consider the act of assigning to each U.S. citizen his or her social security number.
- This pairing defines a function.

> Each citizen is assigned one social security number

- The domain is the set of U.S. citizens.
- The codomain is the set of all nine-digit strings of numbers.

Example 1b

- A university assigns students to dormitory rooms.
- It is unlikely that it is creating a function from the set of available rooms to the set of students.
- Some rooms may have more than one student assigned to them.

A particular room does not necessarily determine a unique student occupant

Definition 1.1: Range of a function

- The range or image of a function $f: X \rightarrow Y$ is the set of those elements of Y that are actual values of f.
- The range of f consists of those y in Y such that $y=f(x)$ for some x in X.
- Using set notation,

$$
\text { Range } \mathrm{f}=\text { Image } \mathrm{f}=\{y \in Y \mid y=f(x) \text { for some } x \in X\}
$$

Example 1a

- Recall the social security function of Example 1a.
- The range consists of those nine-digit numbers actually used as social security numbers.
- For example, is the number $000-00-0000$ in the range?

> No one is actually assigned this number

Single-Variable Real functions

- For single-variable calculus, the functions of interest are those whose domains and codomains are subsets of \mathbb{R}.

Usually only the rule of assignment
is made explicit

- It is generally assumed that the domain is the largest possible subset of \mathbb{R} for which the function makes sense.
- The codomain is generally taken to be all of \mathbb{R}.

Example 3

- Suppose g is a function such that $g(x)=\sqrt{x-1}$.
- If we take the codomain to be all of \mathbb{R}, the domain cannot be any larger than $[1, \infty)$.
- If the domain included any values less than one, the radicand would be negative and, hence, g would not be real-valued.

Multiple-Variable Real functions

- Multiple-variable real functions are the functions whose
- Domains are subsets X of \mathbb{R}^{n}, and
- Codomains are subsets of \mathbb{R}^{m}, for some $n, m \in \mathbb{Z}^{+}$
- For simplicity of notation, we will take the codomains to be all of \mathbb{R}^{m} (except when specified otherwise)
- Such a function is a mapping $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$

$$
\begin{aligned}
& \text { It associates to a vector (or point) } \mathbf{x} \text { in } X \\
& \text { a unique vector (point) } \mathbf{f}(\mathbf{x}) \text { in } \mathbb{R}^{m}
\end{aligned}
$$

Example 4

- Let $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ be defined by

$$
T(x, y, z)=x y+x z+y z
$$

- We can think of T as a sort of "temperature function".
- Given a point $\mathbf{x}=(x, y, z)$ in \mathbb{R}^{3}, $T(x)$ calculates the temperature at that point.

Example 5

- Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by

$$
L(\mathbf{x})=\|\mathbf{x}\|
$$

- This is a "length function".
- It computes the length of any vector \mathbf{x} in \mathbb{R}^{n}.
- It is one-one? L is not, since,

$$
L\left(\mathbf{e}_{i}\right)=L\left(\mathbf{e}_{j}\right)=1,
$$

with \mathbf{e}_{i} and \mathbf{e}_{j} any two of the standard basis vectors for \mathbb{R}^{n}.

- Is L onto? L also fails to be onto, since the length of a vector is always non-negative.

Example 6

- Consider the function given by

$$
\mathbf{N}(\mathbf{x})=\frac{\mathbf{x}}{\|\mathbf{x}\|}
$$

where \mathbf{x} is a vector in \mathbb{R}^{3}.

- Note that \mathbf{N} is not defined if $\mathbf{x}=\mathbf{0}$, so the largest possible domain for \mathbf{N} is,

$$
\mathbb{R}^{3}-\{\mathbf{0}\}
$$

- The range of \mathbf{N} consists of all unit vectors in \mathbb{R}^{3}.
- The function \mathbf{N} is the "normalization function".
- It takes a nonzero vector in \mathbb{R}^{3} and returns the unit vector that points in the same direction.

Example 7

- Sometimes a function may be given numerically by a table.
- One such example is the notion of windchill.

The apparent temperature one feels when taking into account both the actual air temperature and the speed of the wind

Air Temp (deg F)	Windspeed (mph)											
	$\mathbf{5}$	$\mathbf{1 0}$	$\mathbf{1 5}$	$\mathbf{2 0}$	$\mathbf{2 5}$	$\mathbf{3 0}$	$\mathbf{3 5}$	$\mathbf{4 0}$	$\mathbf{4 5}$	$\mathbf{5 0}$	$\mathbf{5 5}$	$\mathbf{6 0}$
	36	34	32	30	29	28	28	27	26	26	25	25
35	31	27	25	24	23	22	21	20	19	19	18	17
30	25	21	19	17	16	15	14	13	12	12	11	10
25	19	15	13	11	9	8	7	6	5	4	4	3
20	13	9	6	4	3	1	0	-1	-2	-3	-3	-4
15	7	3	0	-2	-4	-5	-7	-8	-9	-10	-11	-11
10	1	-4	-7	-9	-11	-12	-14	-15	-16	-17	-18	-19
5	-5	-10	-13	-15	-17	-19	-21	-22	-23	-24	-25	-26
0	-11	-16	-19	-22	-24	-26	-27	-29	-30	-31	-32	-33
-5	-16	-22	-26	-29	-31	-33	-34	-36	-37	-38	-39	-40
-10	-22	-28	-32	-35	-37	-39	-41	-43	-44	-45	-46	-48
-15	-28	-35	-39	-42	-44	-46	-48	-50	-51	-52	-54	-55
-20	-34	-41	-45	-48	-51	-53	-55	-57	-58	-60	-61	-62
-25	-40	-47	-51	-55	-58	-60	-62	-64	-65	-67	-68	-69
-30	-46	-53	-58	-61	-64	-67	-69	-71	-72	-74	-75	-76
-35	-52	-59	-64	-68	-71	-73	-76	-78	-79	-81	-82	-84
-40	-57	-66	-71	-74	-78	-80	-82	-84	-86	-88	-89	-91
-45	-63	-72	-77	-81	-84	-87	-89	-91	-93	-95	-97	-98

Example 7

$\underset{(\operatorname{deg} \mathrm{F})}{\text { Air Temp }}$	Windspeed (mph)											
	5	10	15	20	25	30	35	40	45	50	55	60
40	36	34	32	30	29	28	28	27	26	26	25	25
35	31	27	25	24	23	22	21	20	19	19	18	17
30	25	21	19	17	16	15	14	13	12	12	11	10
25	19	15	13	11	9	8	7	6	5	4	4	3
20	13	9	6	4	3	1	0	-1	-2	-3	-3	-4
15	7	3	0	-2	-4	-5	-7	-8	-9	-10	-11	-11
10	1	-4	-7	-9	-11	-12	-14	-15	-16	-17	-18	-19
5	-5	-10	-13	-15	-17	-19	-21	-22	-23	-24	-25	-26
0	-11	-16	-19	-22	-24	-26	-27	-29	-30	-31	-32	-33
-5	-16	-22	-26	-29	-31	-33	-34	-36	-37	-38	-39	-40
-10	-22	-28	-32	-35	-37	-39	-41	-43	-44	-45	-46	-48
-15	-28	-35	-39	-42	-44	-46	-48	-50	-51	-52	-54	-55
-20	-34	-41	-45	-48	-51	-53	-55	-57	-58	-60	-61	-62
-25	-40	-47	-51	-55	-58	-60	-62	-64	-65	-67	-68	-69
-30	-46	-53	-58	-61	-64	-67	-69	-71	-72	-74	-75	-76
-35	-52	-59	-64	-68	-71	-73	-76	-78	-79	-81	-82	-84
-40	-57	-66	-71	-74	-78	-80	-82	-84	-86	-88	-89	-91
-45	-63	-72	-77	-81	-84	-87	-89	-91	-93	-95	-97	-98

- If the air temperature is $20^{\circ} \mathrm{F}$ and the windspeed is 25 mph , the windchill temperature ("how cold it feels") is $3^{\circ} \mathrm{F}$

Example 7

$\begin{gathered} \text { Air Temp } \\ (\operatorname{deg} \mathrm{F}) \end{gathered}$	Windspeed (mph)											
	5	10	15	20	25	30	35	40	45	50	55	60
40	36	34	32	30	29	28	28	27	26	26	25	25
35	31	27	25	24	23	22	21	20	19	19	18	17
30	25	21	19	17	16	15	14	13	12	12	11	10
25	19	15	13	11	9	8	7	6	5	4	4	3
20	13	9	6	4	3	1	0	-1	-2	-3	-3	-4
15	7	3	0	-2	-4	-5	-7	-8	-9	-10	-11	-11
10	1	-4	-7	-9	-11	-12	-14	-15	-16	-17	-18	-19
5	-5	-10	-13	-15	-17	-19	-21	-22	-23	-24	-25	-26
0	-11	-16	-19	-22	-24	-26	-27	-29	-30	-31	-32	-33
-5	-16	-22	-26	-29	-31	-33	-34	-36	-37	-38	-39	-40
-10	-22	-28	-32	-35	-37	-39	-41	-43	-44	-45	-46	-48
-15	-28	-35	-39	-42	-44	-46	-48	-50	-51	-52	-54	-55
-20	-34	-41	-45	-48	-51	-53	-55	-57	-58	-60	-61	-62
-25	-40	-47	-51	-55	-58	-60	-62	-64	-65	-67	-68	-69
-30	-46	-53	-58	-61	-64	-67	-69	-71	-72	-74	-75	-76
-35	-52	-59	-64	-68	-71	-73	-76	-78	-79	-81	-82	-84
-40	-57	-66	-71	-74	-78	-80	-82	-84	-86	-88	-89	-91
-45	-63	-72	-77	-81	-84	-87	-89	-91	-93	-95	-97	-98

- If s denotes windspeed and t air temperature, then the windchill is a function

$$
W(s, t)
$$

Scalar-valued functions

- The functions described in Examples 4, 5, and 7 are scalar-valued functions

Functions whose codomains are \mathbb{R} or subsets of \mathbb{R}

- Scalar-valued functions are our main concern for this chapter.
- Nonetheless, let's look at a few examples of functions whose codomains are \mathbb{R}^{m} where $m>1$. They are usually called

Vector-valued functions

Example 8

- Define $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by

$$
\mathbf{f}(t)=(\cos t, \sin t, t)
$$

- The range of \mathbf{f} is the curve in \mathbb{R}^{3} with parametric equations

$$
\left\{\begin{array}{l}
x=\cos t \\
y=\sin t \quad t \in \mathbb{R} \\
z=t
\end{array}\right.
$$

Example 8

- Define $\mathbf{f}: \mathbb{R} \rightarrow \mathbb{R}^{3}$ by

$$
\mathbf{f}(t)=(\cos t, \sin t, t)
$$

- If we think of t as a time parameter, then this function traces out the corkscrew curve.

- This curve is called a helix.

Example 9

- We can think on the velocity of a fluid as a vector in \mathbb{R}^{3}
- This vector depends on (at least)
- The point at which one measures the velocity, and
- The time at which one makes the measurement
- Velocity may be considered to be a function

$$
\mathbf{v}: X \subseteq \mathbb{R}^{4} \rightarrow \mathbb{R}^{3}
$$

- The domain X is a subset of \mathbb{R}^{4} :
- Three variables x, y, z are required to describe a point in the fluid.
- A fourth variable t is needed to keep track of time.

Example 9

- For instance, such a function v might be given by the expression

$$
\mathbf{v}(x, y, z, t)=x y z t \mathbf{i}+\left(x^{2}-y^{2}\right) \mathbf{j}+(3 z+t) \mathbf{k}
$$

Vector-valued functions explicit form

- In general, if we have a function $\mathbf{f}: X \subseteq \mathbb{R}^{n} \rightarrow \mathbb{R}^{m}$, then
- $\mathbf{x} \in X$ can be written as,

$$
\mathbf{x}=\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

- and \mathbf{f} can be written in terms of its component functions,

$$
f_{1}, f_{2}, \ldots, f_{m}
$$

- The component functions are scalar-valued functions of $x \in X$.
- So, Vector functions can be written as the Cartesian product of scalar-valued functions. In general, is enough to study the properties of the scalar-valued function, and then apply those properties in each component.

Vector-valued functions explicit form

$$
\mathbf{f}(\mathbf{x})=\mathbf{f}\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

(emphasizing the variables)

$$
=\left(f_{1}(\mathbf{x}), f_{2}(\mathbf{x}), \ldots, f_{m}(\mathbf{x})\right)
$$

(emphasizing the component functions)
$=\left(f_{1}\left(x_{1}, x_{2}, \ldots, x_{n}\right), f_{2}\left(x_{1}, x_{2}, \ldots, x_{n}\right), \ldots, f_{m}\left(x_{1}, x_{2}, \ldots, x_{n}\right)\right.$ (writing out all components)

Example 5

- Let $L: \mathbb{R}^{n} \rightarrow \mathbb{R}$ be given by

$$
L(\mathbf{x})=\|\mathbf{x}\|
$$

- The function L, when expanded, becomes

$$
L(\mathbf{x})=L\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\sqrt{x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}}
$$

Example 6

- Consider the function given by

$$
\mathbf{N}(\mathbf{x})=\frac{\mathbf{x}}{\|\mathbf{x}\|}
$$

where \mathbf{x} is a vector in \mathbb{R}^{3}.

- The function \mathbf{N} becomes

$$
\begin{aligned}
\mathbf{N}(\mathbf{x}) & =\frac{\mathbf{x}}{\|\mathbf{x}\|}=\frac{\left(x_{1}, x_{2}, x_{3}\right)}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \\
& =\left(\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}, \frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}, \frac{x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}}\right)
\end{aligned}
$$

Example 6

- Hence, the three component functions of \mathbf{N} are

$$
\begin{aligned}
& N_{1}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{1}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \\
& N_{2}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{2}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}} \\
& N_{3}\left(x_{1}, x_{2}, x_{3}\right)=\frac{x_{3}}{\sqrt{x_{1}^{2}+x_{2}^{2}+x_{3}^{2}}}
\end{aligned}
$$

Outline

(1) Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Graphing Scalar-Valued Functions

- A function $f: X \subseteq \mathbb{R} \rightarrow \mathbb{R}$ takes a real number and returns another real number

- The graph of f is something that "lives" in \mathbb{R}^{2}

Graphing Scalar-Valued Functions

- The graph of f consists of points (x, y) such that $y=f(x)$.

$$
\text { Graph } f=\{(x, f(x)) \mid x \in X\}
$$

- In general, the graph of a scalar-valued function of a single variable is a curve

> A one-dimensional object
> sitting inside a two dimensional space

Graphing a Function of Two Variables

- Suppose we have a function $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$
- We make essentially the same definition for the graph

$$
\begin{aligned}
& \text { Graph } f=\{(\mathbf{x}, f(\mathbf{x})) \mid \mathbf{x} \in X\} \\
& \quad \mathbf{x}=(x, y) \text { is a point of } \mathbb{R}^{2}
\end{aligned}
$$

- Thus, $\{(\mathbf{x}, f(\mathbf{x}))\}$ may also be written as

$$
\{(x, y, f(x, y))\} \quad \text { or } \quad\{(x, y, z) \mid(x, y) \in X, z=f(x, y)\}
$$

- Hence, the graph of a scalar-valued function of two variables is something that sits in \mathbb{R}^{3}

The graph will be a surface

Example 10

- Consider the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=\frac{1}{12} y^{3}-y-\frac{1}{4} x^{2}+\frac{7}{2}
$$

Example 10

- Each point $\mathbf{x}=(x, y)$ in \mathbb{R}^{2}, is graphed as a point in \mathbb{R}^{3} with coordinates

$$
\left(x, y, \frac{1}{12} y^{3}-y-\frac{1}{4} x^{2}+\frac{7}{2}\right)
$$

Contour Curves and Level Curves

- Graphing functions of two variables is a much more difficult task than graphing functions of one variable

One method is
 to let a computer do the work

- Nonetheless, to get a feeling, a sketch of a rough graph is still a valuable skill

The trick is to find a way to cut down on the dimensions involved

- One way is to draw certain special curves that lie on the surface

$$
z=f(x, y)
$$

Contour Curves and Level Curves

- This special curves that lie on the surface $z=f(x, y)$ are called contour curves.
- Contour curves are obtained by intersecting the surface with horizontal planes $z=c$, for various values of the constant c.

Example 10

- Some contour curves drawn on the surface of Example 10

Contour Curves and Level Curves

- Let us compress all the contour curves onto the $x y$-plane

Look down

along the positive z-axis

- Then we create a "topographic map" of the surface called level curves of the original function f

Example 10

- Some level curves drawn for the Example 10

Example 10

- Some contour and level curves drawn for the Example 10

Contour Curves and Level Curves

We can reverse the process in order to sketch systematically the graph of a function f of two variables

1. We first construct a topographic map in \mathbb{R}^{2} by finding the level curves of f.
2. Then situate these curves in \mathbb{R}^{3} as contour curves at the appropriate heights.
3. Finally, complete the graph of the function.

Definition 1.4: Level Curve

- Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a scalar-valued function of two variables.
- The level curve at height c of f is the curve in \mathbb{R}^{2} defined by the equation

$$
f(x, y)=c
$$

where c is a constant.

- In mathematical notation,

$$
L_{c}=\left\{(x, y) \in \mathbb{R}^{2} \mid f(x, y)=c\right\}
$$

Definition 1.4: Contour Curve

- Let $f: X \subseteq \mathbb{R}^{2} \rightarrow \mathbb{R}$ be a scalar-valued function of two variables
- The contour curve at height c of f is the level curve drawn in \mathbb{R}^{3}.
- In mathematical notation,

$$
C_{c}=\left\{(x, y, z) \in \mathbb{R}^{3} \mid f(x, y)=c\right\}
$$

Example 11

Use level and contour curves to construct the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

- By Definition 1.4, the level curve at height c is

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid 4-x^{2}-y^{2}=c\right\}=\left\{(x, y) \mid x^{2}+y^{2}=4-c\right\}
$$

- The level curves for $c<4$ are circles centered at the origin of radius $\sqrt{4-c}$
- The level "curve" at height $c=4$ is not a curve but just a single point (the origin)
- There are no level curves at heights larger than 4 , since the equation $x^{2}+y^{2}=4-c$ has no real solutions in x and y

Example 11

Use level and contour curves to construct the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

c	level curve $x^{2}+y^{2}=4-c$
-5	$x^{2}+y^{2}=9$
-1	$x^{2}+y^{2}=5$
0	$x^{2}+y^{2}=4$
1	$x^{2}+y^{2}=3$
3	$x^{2}+y^{2}=1$
4	$x^{2}+y^{2}=0 \Longleftrightarrow x=y=0$
c, where $c>4$	empty

Example 11

Use level and contour curves to construct the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

- "Topographic map" or family of level curves of the surface

$$
z=4-x^{2}-y^{2}
$$

Example 11

Use level and contour curves to construct the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

- Some contour curves, which sit in \mathbb{R}^{3} :

Example 11

Use level and contour curves to construct the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

- Complete graph of surface

- It looks like an inverted antenna and is called a paraboloid

Example 11 - Sections of the surface

If you want to get even a better feeling about the shape of the surface, is also useful to "chop" the surface with (vertical) planes of the form $x=c$ or $y=c$:

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

- Section of the surface $z=4-x^{2}-y^{2}$ by the plane $x=0$

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=4-x^{2}-y^{2}, x=0\right\}=\left\{(0, y, z) \mid z=4-y^{2}\right\}
$$

- Section of the surface $z=4-x^{2}-y^{2}$ by the plane $y=0$

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=4-x^{2}-y^{2}, y=0\right\}=\left\{(x, 0, z) \mid z=4-x^{2}\right\}
$$

Example 11

Use level and contour curves to construct the graph of the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=4-x^{2}-y^{2}
$$

Example 12

Graph the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=y^{2}-x^{2}
$$

c	level curve $y^{2}-x^{2}=c$
-4	$x^{2}-y^{2}=4$
-1	$x^{2}-y^{2}=1$
0	$y^{2}-x^{2}=0 \Longleftrightarrow(y-x)(y+x)=0 \Longleftrightarrow y= \pm x$
1	$y^{2}-x^{2}=1$
4	$y^{2}-x^{2}=4$

Example 12

Graph the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=y^{2}-x^{2}
$$

The level curves are almost all hyperbolas

- The exception is the level curve at height 0 , which is a pair of intersecting lines

Example 12

Graph the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=y^{2}-x^{2}
$$

- Section of the surface $z=y^{2}-x^{2}$ by the plane $x=c$

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=y^{2}-x^{2}, x=c\right\}=\left\{(c, y, z) \mid z=y^{2}-c^{2}\right\}
$$

$$
\text { Parabolas in the planes } x=c
$$

- Section of the surface $z=y^{2}-x^{2}$ by the plane $y=c$

$$
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=y^{2}-x^{2}, y=c\right\}=\left\{(c, y, z) \mid z=c^{2}-x^{2}\right\}
$$

Parabolas in the planes $y=c$

Example 12

Graph the function

$$
f: \mathbb{R}^{2} \rightarrow \mathbb{R}, \quad f(x, y)=y^{2}-x^{2}
$$

- The level curves and sections generate the contour curves and surface depicted in figure

- This surface is called a hyperbolic paraboloid.

Example 13

Graph the function:

$$
h: \mathbb{R}^{2} \backslash\{(0,0)\} \rightarrow \mathbb{R}, \quad h(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

- The level curve of h at height c is

$$
\left\{(x, y) \in \mathbb{R}^{2} \mid \ln \left(x^{2}+y^{2}\right)=c\right\}=\left\{(x, y) \mid x^{2}+y^{2}=e^{c}\right\}
$$

- Since $e^{c}>0$ for all $c \in \mathbb{R}$, the level curve
- Exists for any c, and
- Is a circle of radius $\sqrt{e^{c}}=e^{c / 2}$

Example 13

Graph the function:

$$
h: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, \quad h(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

c	level curve $x^{2}+y^{2}=e^{c}$
-5	$x^{2}+y^{2}=e^{-5}$
-1	$x^{2}+y^{2}=e^{-1}$
0	$y^{2}+x^{2}=1$
1	$y^{2}+x^{2}=e$
3	$y^{2}+x^{2}=e^{3}$
4	$y^{2}+x^{2}=e^{4}$

Example 13

Graph the function:

$$
h: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, \quad h(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

- The collection of level curves is shown in figure

Example 13

Graph the function:

$$
h: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, \quad h(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

- Section of the graph by the plane $x=0$

$$
\begin{array}{r}
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\ln \left(x^{2}+y^{2}\right), x=0\right\} \\
=\left\{(0, y, z)\left|z=\ln \left(y^{2}\right)=2 \ln \right| y \mid\right\}
\end{array}
$$

- Section of the graph by the plane $y=0$

$$
\begin{array}{r}
\left\{(x, y, z) \in \mathbb{R}^{3} \mid z=\ln \left(x^{2}+y^{2}\right), y=0\right\} \\
\quad=\left\{(x, 0, z)\left|z=\ln \left(x^{2}\right)=2 \ln \right| x \mid\right\}
\end{array}
$$

Example 13

Graph the function:

$$
h: \mathbb{R}^{2}-\{(0,0)\} \rightarrow \mathbb{R}, \quad h(x, y)=\ln \left(x^{2}+y^{2}\right)
$$

- The complete graph is shown in figure

The Unit Circle Example

Important remark:

Not all curves in \mathbb{R}^{2} can be described as the graph of a single function of one variable

- The most familiar example is the unit circle

- Its graph cannot be determined by a single equation of the form

$$
y=f(x)
$$

The Unit Circle Example

- The graph of the circle may be described analytically by the equation

$$
x^{2}+y^{2}=1
$$

- In general, a curve in \mathbb{R}^{2} is determined by an arbitrary equation in x and y

> Not necessarily one that isolates y alone on one side

- This means that a general curve is given by an equation of the form

$$
\begin{gathered}
\qquad F(x, y)=c \\
\text { As level set of } \\
\text { a function of two variables }
\end{gathered}
$$

The Unit Circle Example

- The analogous situation occurs with surfaces in \mathbb{R}^{3}.
- Frequently a surface is determined by an equation of the form

$$
\begin{gathered}
\qquad F(x, y, z)=c \\
\text { As a level set of } \\
\text { a function of three variables }
\end{gathered}
$$

- It is not necessarily one of the form

$$
z=f(x, y)
$$

If it is not possible to state a variable as function of the other ones then is called a implicit formula. All functions can be expressed as implicit formula doing, $z-f(x, y)=c, c=0$.

Example 15

> A sphere is a surface in \mathbb{R}^{3} whose points are all equidistant from a fixed point

- If this fixed point is the origin, then the equation for the sphere is

$$
\|\mathbf{x}-\mathbf{0}\|=\|\mathbf{x}\|=a
$$

where a is a positive constant and $\mathbf{x}=(x, y, z)$ is a point on the sphere.

- If we square both sides of equation and expand the dot product

$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

Example 15

A sphere is a surface in \mathbb{R}^{3}
whose points are all equidistant from a fixed point

- If the center of the sphere is at the point $\mathbf{x}_{0}=(x, y, z)$ then equation should be modified to

$$
\left\|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right\|=a
$$

Example 15

A sphere is a surface in \mathbb{R}^{3}

 whose points are all equidistant from a fixed point

- When equation $\left\|\mathbf{x}-\mathbf{x}_{\mathbf{0}}\right\|=a$ is expanded, the following general equation for a sphere is obtained

$$
\left(x-x_{0}\right)^{2}+\left(y-y_{0}\right)^{2}+\left(z-z_{0}\right)^{2}=a^{2}
$$

Example 15

A sphere is a surface in \mathbb{R}^{3}

 whose points are all equidistant from a fixed point$$
x^{2}+y^{2}+z^{2}=a^{2}
$$

- In the equation for a sphere, there is no way to solve for z uniquely in terms of x and y
- If we try to isolate z, then

$$
z^{2}=a^{2}-x^{2}-y^{2}
$$

- So we are forced to make a choice of positive or negative square roots in order to solve for z

$$
z=\sqrt{a^{2}-x^{2}-y^{2}} \text { or } z=-\sqrt{a^{2}-x^{2}-y^{2}}
$$

Example 15

A sphere is a surface in \mathbb{R}^{3}

whose points are all equidistant from a fixed point

$$
z=\sqrt{a^{2}-x^{2}-y^{2}} \text { or } z=-\sqrt{a^{2}-x^{2}-y^{2}}
$$

- The positive square root corresponds to the upper hemisphere.
- The negative square root corresponds to the lower hemisphere.

In any case, the entire sphere cannot be the graph of a single function of two variables

Outline

(1) Functions of Several Variables; Graphing Surfaces

- Functions and applications
- Graphing functions: contour and level curves
- Conic sections curves

Quadratic Surfaces

Conic sections

- Conic sections are curves obtained from the intersection of a cone with various planes.
- They are among the simplest, yet also the most interesting, of plane curves:
- The circle.
- The ellipse.
- The parabola.
- The hyperbola.
- They have an elegant algebraic connection:

Every conic section is described analytically by a polynomial equation of degree two in two variables

Conic sections

Every conic section is described analytically by a polynomial equation of degree two in two variables

- That is, every conic can be described by an equation that looks like

$$
A x^{2}+B x y+C y^{2}+D x+E y+F=0
$$

for suitable constants A, \ldots, F.

General Quadric Surfaces

- In \mathbb{R}^{3}, the analytic analogue of the conic section is called a quadratic surface.
- Quadratic surfaces are defined by equations that are polynomials of degree two in three variables

$$
A x^{2}+B x y+C x z+D y^{2}+E y z+F z^{2}+G x+H y+I z+J=0
$$

- To pass from this equation to the appropriate graph is, in general, a cumbersome process
We need the aid of either a computer or more linear algebra than we currently have at our disposal
- We sketch some examples whose corresponding analytic equations are relatively simple.

Ellipsoid

- It is the three-dimensional analogue of an ellipse in the plane.
- If $a=b=c$, then the ellipsoid is a sphere of radius a.
- The sections of the ellipsoid by planes perpendicular to the coordinate axes are all ellipses.

Elliptic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

- The paraboloid has:
- Elliptical (or single-point or empty) sections by the planes " $z=$ constant", and
- Parabolic sections by " $x=$ constant" or " $y=$ constant" planes

Elliptic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

- The constants a and b affect the aspect ratio of the elliptical cross sections

Elliptic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

- The constant c affects the steepness of the dish

$$
\begin{aligned}
& \text { Larger values of } c \\
& \text { produce steeper paraboloids }
\end{aligned}
$$

Hyperbolic paraboloid

$$
\frac{z}{c}=\frac{x^{2}}{a^{2}}-\frac{y^{2}}{b^{2}}
$$

- It is shaped like a saddle whose
- "x = constant" or " $y=$ constant" sections are parabolas, and
- " $z=$ constant" sections are hyperbolas

Elliptic cone

$$
\frac{z^{2}}{c^{2}}=\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}
$$

- The sections by " $z=$ constant" planes are ellipses
- The sections by $x=0$ or $y=0$ are each a pair of intersecting lines.

